

III Semester B.A./B.Sc. Examination, Nov./Dec. 2018 (NS) (2012-13 and Onwards) (Repeaters - Prior to 2015-16) **MATHEMATICS** Mathematics – III

Time: 3 Hours

Max. Marks: 100

Instruction: Answer all questions.

Answer any fifteen questions:

 $(15 \times 2 = 30)$

- Define a normal subgroup.
- 2) Prove that every subgroup of an abelian group is normal.
- 3) If $f: (z, +) \to (z, +)$ is defined by $f(x) \neq 0$, $\forall x \in z$ then show that f is homomorphism.

 4) If $f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix}$ then find fog.

4) If
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$$
, $g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix}$ then find fog.

- 5) Draw the graph of the system of inequalities $x \ge 3$ and $x \le 6$.
- 6) Define basic feasible solution and optimal solution.
- 7) Show that $X = \{x : |x| \le 3\}$ is a convex set.
- 8) Show that the sequence $\left\{\frac{1}{n}\right\}$ is bounded.
- 9) Show that the sequence whose nth term is $\frac{2n+5}{3n+4}$ is monotonically decreasing.
- 10) Test the convergence of the sequence whose n^{th} term is $1 + \cos n \pi$.
- 11) Find the limit of a sequence whose nth term is $\frac{n^2 + 3n + 7}{(2n-3)(n+5)}$
- 12) Discuss the convergence of the series $1 + \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \dots$
- 13) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n^2 + n + 1}{n^4 + 1}.$

- 14) State Leibnitz's test for alternating series.
- 15) State Cauchy's root test for series of positive terms.
- 16) Sum to infinity the series $\frac{x}{1} + \frac{x^3}{3} + \frac{x^5}{5} + \dots$ to ∞ .

17) If
$$f(x) = \begin{cases} 1+x & \text{for } x < 2 \\ K & \text{for } x = 2 \\ 5-x & \text{for } x > 2 \end{cases}$$

is continuous at x = 2, find K.

- 18) State Rolle's theorem.
- 19) Expand $\log (1 + x)$ up to the term containing x^2 by Maclaurins theorem.
- 20) Evaluate $\lim_{x\to 0} \frac{e^x + \sin x 1}{\log (1+x)}$.

II. Answer any two questions:

 $(2 \times 5 = 10)$

- 1) Let H be a subgroup and K be a normal subgroup of a group G. Show that $H \cap K$ is normal in H.
- 2) Prove that Homomorphic image of an abelian group is abelian.
- 3) Let $f: G \to G'$ be a homomorphism of a group with Kernal K, then prove that f is one-one if and only if $K = \{e\}$ where 'e' is the identity element of G.
- 4) Show that every infinite cyclic group is isomorphic to additive group of integers.

III. Answer any three questions:

 $(3 \times 5 = 15)$

()

- 1) Prove that the set of all feasible solution of LPP is a convex set.
- 2) Find all basic feasible solution of the system of equation x + 2y + z = 4 and 2x + y + 5z = 5.
- 3) Using simplex method maximize P = 5x + y + 4z subject to the constraints $y + z \le 3$, $x + y + z \le 5$ x + z = 8, $x \ge 0$, $y \ge 0$, $z \ge 0$.

4) Using Vogel's Method, find the minimum cost of transportation from

		D1	D2	D3	D4	Supply
O rigi	01	11	13	17	14	250
	02	16	18	14	10	300
	03	21	24	13	10	400
	Demand	200	225	275	250	950

IV. Answer any two questions:

 $(2 \times 5 = 10)$

1) Find the limit of a sequence

i)
$$\{(-1)^n\}$$

ii)
$$\left\{ \frac{2n+3}{5n+6} \right\}$$
.

Prove that a monotonically increasing sequence bounded above is convergent.

3) Discuss the nature of the sequence $\{n^{\frac{1}{n}}\}$.

V. Answer any four questions:

 $(4 \times 5 = 20)$

1) Discuss the convergence of the series $\frac{x}{2.3} + \frac{x^2}{3.4} + \frac{x^3}{4.5} + ...$ to $\infty (x > 0)$

2) State and prove D'Alembert's ratio test.

3) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n^3}{3_i^n}$.

4) Discuss the convergence of the series $\sum_{n=1}^{\infty} (-1)^{n-1} \left[\sqrt{n+1} - \sqrt{n} \right]$.

5) Sum the series $1 + \frac{3}{3} + \frac{3.5}{3.6} + \frac{3.5.7}{3.6.9} + \dots$

6) Sum the series $\sum_{n=1}^{\infty} \frac{\left(3n^2 - n + 1\right)}{\lfloor \underline{n}} x^n.$

VI. Answer any three questions:

(3x5=15)

- 1) Examine the differentiability of the function $f(x) = \begin{cases} 5x 4 & \text{if } 0 < x \le 1 \\ 4x^2 3x & \text{if } 1 < x < 2 \end{cases}$
- 2) State and prove Lagrange's mean value theorem.
- 3) Verify Rolle's theorem for the function $f(x) = x^2 6x + 8$ in [2, 4].
- 4) Expand $\log (1 x)$ upto the term containing x^4 by Maclaurins theorem.
- 5) Evaluate $\lim_{x \to \frac{\pi}{2}} (\sin x)^{\tan x}$

